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This paper describes the behavioral adaptation observed for 16 pigeons responding to a step tran-
sition in the reinforcement rate in a repeated-trial design. Within each trial, following exposure for
a fixed period to a variable-interval schedule, there was an unsignaled change in the schedule to
extinction. The step transition allowed an experimental test of the applicability of a linear analysis
to steady-state dynamic behavior. The computations required for this test yielded, as an intermediate
result, transfer functions for each of the 16 birds from 1 mHz to 256 mHz. The transfer functions
obtained show greater responsiveness to lower frequencies (i.e., longer time-scale structures in the
reinforcement schedule); hence, the pigeons have the characteristics of a low-pass filter. The out-
come of the test is that some predictability of the pigeons’ future behavior is possible.
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Ultimately, our goal for behavior analysis is
to predict fully the behavior that will be sup-
ported by any given environment. The end-
point of our report’s data reduction is a X2
assessment of a prediction of steady-state dy-
namic behavior made by linear analysis. In
the course of this report, we will develop the
techniques used for the predictions and ob-
tain some useful intermediate results.

Over the past few decades, environmental
input and the supported behavior have often
been characterized with globally time-aver-
aged parameters. Typically, reinforcement
schedule data from an entire session, or sev-
eral sessions, are combined to yield a single
parameter such as average rate of reinforce-

The authors gratefully acknowledge the contribution
of Helen Bush and Josey Chu for meticulously running
the birds; Elizabeth Palya for contribution in all phases
of this research; and Bo Codella, Greg Galbicka, and Ber-
nard Hill for their helpful comments and suggestions on
carlier drafts of this paper. Portions of this paper were
presented at the Society for the Quantitative Analysis of
Behavior, May 1994.

The addresses for questions and other correspondence
are Bill Palya or Don Walter, Department of Psychology,
Jacksonville State University, Jacksonville, Alabama 36265
(palya@sebac.jsu.edu or walter@sebac.jsu.edu). Bob Kes-
sel is now at Naval Center for Space Technology, Code
8001.1, Naval Research Laboratory, Washington, D.C.
20375-5354 (kessel@ncst.nrl.navy.mil). Bob Lucke is now
at Remote Sensing Physics Branch, Code 7220, Naval Re-
search Laboratory, Washington, D.C. 20375-5352 (lucke@
poamb.nrl.navy.mil). The data reduction software used
for the linear analysis based prediction is available from
JSU program archive. The raw data logs are also available
upon request from the JSU data archive.

ment or average ratio of reinforcers between
the alternatives of a concurrent schedule.
Similarly, long samples of the supported be-
havioral output are compressed into a param-
eter such as average responses per second or
average ratio of responding to the alterna-
tives of a concurrent schedule. This has been
a fruitful approach and has led to quantita-
tive molar predictions for the dependence of
global time average response rates upon glob-
al time average schedule parameters. For at
least some schedules, these relationships are
reasonably well established (e.g., the gener-
alized matching law, Baum, 1979). The mo-
ment-to-moment structure of behavior seen
in response to a dynamic (i.e., time varying)
input, even in average steady state, has re-
ceived less attention.

Galbicka, Kautz, and Jagers (1993) and Gal-
bicka (in press) suggest that the analysis of
behavior be broadened well beyond contin-
gencies that are designed to minimize local
variation in response structure (e.g., con-
stant-probability variable-interval schedules).
The present report focuses on the steady-state
behavioral adaptation supported by an unsig-
naled step transition in the contingencies of
reinforcement and on describing this adap-
tation with a linear analysis (McDowell, Bass,
& Kessel, 1993). This focus on the steady-state
behavior supported by a schedule transition
in repeated trials provides an intermediate
step between completely local, or molecular,
measurements of a unique behavioral occur-
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rence and global, or molar, time averages of
behavior across multiple sessions.

This experiment has a very simple dynamic
structure as part of the reinforcement contin-
gency: a step transition from a variable-inter-
val (VI) schedule to extinction. Like a mixed
schedule, the procedure repetitively switched
between a VI schedule and extinction with no
change in the explicit stimuli. The task of the
present research is not simply to determine
if pigeons peck during the period when the
reinforcer is available and refrain from peck-
ing during extinction. Rather, our task is to
quantify the relation between this dynamic re-
inforcement schedule and the supported be-
havior using a construct from linear analysis
called a transfer function. (Note that linear
analysis, by itself, does not determine what
schedule will be the most useful in an initial
study of behavioral dynamics.) McDowell,
Bass, and Kessel (1992) showed that if the
transfer function (or linear kernel) were
known, then the dynamic behavior supported
by a step transition between two VI schedules
could be computed. Of course, at present,
the transfer function is not known a priori;
instead, it must be measured experimentally:
If the average moment-to-moment behavior
generated by a particular step transition is
measured, then a computational technique
exists that combines the reinforcement
schedule with the behavioral data to deter-
mine the transfer function. Once an organ-
ism’s transfer function is extracted using one
reinforcement input/behavior output pair, its
behavior for a new reinforcement schedule
can be predicted based solely on this transfer
function and the new schedule. The more
closely the predicted behavior agrees with the
measured behavior, the more useful a linear
analysis will be in understanding the relation
between the reinforcement schedule and sup-
ported behavior. Because this is the first use
of a linear analysis with time-dependent be-
havioral data, a major portion of this paper
is, accordingly, a presentation of the analytic
and numerical techniques involved.

The report begins with the traditional de-
scription of the experimental method. The
next section then develops the general meth-
od and auxiliary techniques we use to make
a prediction of behavior. The first portion of
this section is an averaging method that is
used to combine data from the repeated tri-
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als. The second part is an introduction to
Fourier transforms (a standard technique of
linear analysis). The third subsection is a long
thoroughgoing discussion of the method
used to extract a transfer function from data
and predict behavior under a new schedule.
There are two parts in the results section.
First, we show, for 1 bird, all of the interme-
diate results obtained in the process of deter-
mining the transfer function and predicting
the output given a novel input. In the second
part of the results section we define the ap-
propriate reduced x? test and then assess the
predictions’ fidelity to the observed behavior
on the new schedule for the remaining 15
birds. The paper concludes with a brief dis-
cussion section. There is also an Appendix
that covers some relevant technical aspects of
linear analysis.

METHOD
Subjects

Sixteen adult experimentally naive pigeons
obtained from a local supplier were used.
They were housed under a 19:5 hr light/dark
cycle in individual cages with free access to
water. All were maintained at approximately
80% of their ad lib weights by limited feeding
with pelletized laying mash.

Apparatus

Five experimental chambers were used.
The interior of each was a box (30 cm by 30
cm by 34 cm high). An unfinished aluminum
panel served as one wall of the chamber; the
other sides were painted white. The stimulus
panel had a feeder aperture 5 cm in diame-
ter, medially located 10 cm above the grid
floor. Three response keys, each 2 cm in di-
ameter, were located 9 cm apart, 29 cm above
the grid floor. Only the center key was used.
It required approximately 0.15 N to operate.
The key was transilluminated by a stimulus
projector containing the Rosco pea (86, yel-
low green) theatrical gel throughout all
phases of the experiment, with the exception
of the scheduled blackouts and during rein-
forcement. Two houselights were located on
the stimulus panel 32 cm above the grid floor.
The lamps were shielded such that their light
was directed towards the ceiling. Ventilation
was provided by an exhaust fan mounted on
the outside of the chamber. A white noise
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Fig. 1. A schematic of the basic procedure used for the transition trials of this experiment. The time intervals used
are Ti;; = 1,000 s, a 10-s chamber blackout, and 7y; = 200 s or 300 s. R({) is the locally averaged reinforcement rate.

generator provided ambient masking noise in
the chamber. Stimulus events were controlled
and key pecks were recorded by a computer
system (Palya & Walter, 1993). The computer
archived the time of each stimulus and re-
sponse event in l-ms “ticks.” Subsequent
data extraction and analysis routines provid-
ed the derived data. Complete raw data event
logs of all research are maintained for 10
years and are available from the authors.

Procedure

All pigeons were magazine trained to ap-
proach and eat from the food magazine with-
in 3 s on three consecutive presentations. The
birds were then autoshaped to peck the cen-
ter key, and subsequent responding was main-
tained under a short VI schedule in the pres-
ence of the pea-colored keylight. To maintain
a constant weight throughout the course of
the experiment, each session typically con-
tained 45 to 55 food presentations, the exact
number being determined by the bird’s body
weight that day. Experimental treatments
(phases) were continued until there were no
apparent session-to-session trends in the data,
as judged by visually inspecting daily plots of
behavioral measures.

The data came from two VI-to-extinction
step-transition schedules (Phases 1 and 2).
The step-transition procedure is illustrated in
Figure 1. Within each trial, the pigeons were
first exposed to a VI schedule for a period
Ty, Next, an unsignaled transition to extinc-
tion occurred. There were no changes in any
explicit stimuli. Extinction was in effect from
Ty, to T, The only stimulus correlated with
the step transition was the consistent tempo-

ral duration of 75;. The end of the extinction
period was followed by a 10-s blackout, dur-
ing which the chamber was totally dark. This
blackout procedure provided a relatively
sharp demarcation at the beginning of each
trial. The chamber was also dark for several
seconds between the time the birds were first
put in the chamber and the time the control
software started a session’s first trial. There
were typically five step-transition trials in each
session.

Any initial study of steady-state behavioral
dynamics necessarily has an exploratory char-
acter. Because the stability and orderliness of
the supported behavior were unknown at the
outset of the experiment, we exposed 8 birds
to the procedures with VI schedules com-
posed of exponential (Fleshler & Hoffman,
1962) distributions of interreinforcement in-
tervals (IRI). A second set of 8 birds had rect-
angular IRI distributions. Our selections for
Phase 1 were a VI 20-s schedule with 75, of
200 s followed by 800 s of extinction, yielding
a T, of 1,000 s. During Phase 2, we grouped
the birds into sets of 4 and changed either
the 7Ty, (200 s to 300 s) or the VI schedule
(VI 20 s to VI 40 s) so we could test the pre-
dictions of linear analysis. 7, was held con-
stant for computational ease. The average
number of reinforcers was determined by the
trial duration and the VI schedule. The actual
VI schedules were constructed with a se-
quence of IRI times that were exhaustively
drawn, without replacement, from a random-
ized pool containing five sets of identical 20
element Fleshler-Hoffman or rectangular val-
ues (i.e., similar to a VI tape). Each experi-



394

mental session was begun at a random point
in that fixed sequence of IRI times.

CONCEPTUAL FRAMEWORK AND
AUXILIARY TECHNIQUES

Determining the quantitative relationship
between the obtained structure in steady-state
behavior and the supporting reinforcement
schedule is the core of our linear analysis.
There are two auxiliary techniques that are
required to obtain and use this relationship—
one specialized for repeated-trials data and
the other quite general. We will cover these
auxiliary techniques first and then subse-
quently address the framework used to pre-
dict behavior.

Averaged Steady-State Dynamics

This subsection defines the technique that
we used to obtain an average steady state
from the repeated-trials data. The character-
istics of the average are briefly discussed. In
addition, we will consider the resulting aver-
ages without reference to linear analysis.

We applied a technique, the repeated-trials
local average, to both the input data (reinforc-
er delivery times) and the output data (op-
erant response times) to combine the steady-
state trials. This is a common technique used
to compute the average behavior supported
by a fixed-interval (FI) schedule: The within-
trial elapsed time for a set of trials is first syn-
chronized to a common time base and the
resulting ensemble is then averaged. For this
experiment’s data reduction we used a com-
mon time base, T, in length, divided into
512 equal time subintervals, or bins. The re-
inforcement and response times from all tri-
als after stability occurred (as noted, the final
20 sessions) were mapped to the common
time base. We computed the local average
rates of reinforcement and responding for
each bin by dividing the number of events
occurring in the bin by the time duration of
that bin. The end result is the averaged mo-
ment-to-moment changes in the reinforce-
ment rate and the response rate at each point
in the trial interval. The choice of 512 bins
was determined by the fast Fourier transform
(FFT) routines used in the linear analysis.

A repeated-trials local average condenses
the completely local (or molecular) snap-
shots of behavior or reinforcement from the
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individual trials into a single composite pic-
ture. To reach the more global time averages
used in molar studies, one would continue
condensing the data along the length of the
common time-base interval by further aver-
aging across the 512 bin rates to produce a
single average rate. A repeated-trials local av-
erage is probably meaningful only after an or-
ganism has reached steady state. Further-
more, the obtained repeated-trials local
average should not be confused with the first
extinction exposure, just as the average
steady-state FI scallop should not be confused
with the initial acquisition.

Figure 2 shows data from 4 representative
birds obtained during the steady-state portion
of Phase 1. There is considerable precision in
the control of responding during steady state
by the duration of the VI schedule, 75;, ap-
parent in Figure 2. A similarly precise tem-
poral control has been shown with the peak
procedure (Catania, 1970; Roberts, 1981).
The 200-s length for the VI schedule portion
of the trial was invariant and was timed irre-
spective of the occurrences of responding or
reinforcers, yet a noticeable change in re-
sponse rate occurred within seconds of the
actual 7Ty;. The well-defined falling edge seen
in the behavior of the 4 birds in Figure 2 is
not an artifact of averaging the steady-state
trials and occurs in the data from 15 of the
16 birds. The standard deviation of the re-
sponse rate does not noticeably increase for
times close to Ty, as would have occurred if
the pigeons ceased responding over a range
of times. The Phase 2 results showed similar
precision in control of the behavior by the
different VI schedules and 75, durations.

The patterns of reinforcement and re-
sponse rates are not completely featureless.
There is local scatter in the reinforcement
rates, which is a slight qualitative departure
from the general overview of the schedule
shown in Figure 1. Although the patterns of
response rates are similar, each bird’s repeat-
ed-trials local average behavior does show
some unique characteristics.

Fourier Transforms

The Fourier transform is a standard math-
ematical technique often used as part of an
analysis of time series data (Oppenheim &
Schafer, 1975). It is particularly helpful when
studying extended or intricate time depen-
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Fig. 2. Typical repeated-trials local average reinforcement (top frame of each panel) and supported behavior
(bottom frame of each panel) for the Phase 1 step transition from a VI schedule to extinction. The left column
shows data from the group with an exponential IRI distribution, and the right column shows data from the group
with the rectangular IRI distribution. The scale of the scatter in reinforcement rates is compatible with the number
of reinforcers delivered during the time used to compute the rate averages and 1/ VN counting statistics.

dencies of an externally driven system. We
will express the relationship between the re-
inforcement schedule and the supported be-
havior as a ratio of Fourier transforms. This
subsection covers Fourier transform opera-
tions in general terms as well as the specific
definition of the transform employed in this
report.

A Fourier transform decomposes a func-
tion of time into a sum of sinusoidal (sine
wave) components of different frequencies.
The frequencies required in the sum to con-
struct a given function are determined by the
function. For example, an FI 20-s reinforce-
ment schedule will have a strong component
at 0.05 Hz (or 1/20 s). In general, a function
that changes only slowly with time will be pre-
dominantly composed of low frequencies; a
function that changes more rapidly will re-
quire a larger contribution from higher fre-

quencies. The sharp falling edge that appears
in our experiment’s reinforcement schedule
will require high-frequency components to be
significant in the Fourier transform. If a func-
tion of time contains structures at a time scale
of At, the Fourier transform will contain sig-
nificant components with frequencies that
have half-cycle times that are at least as short
as At (i.e.,, f= 1/2A7). A sum of sinusoidal
components can yield nonsinusoidal shapes:
Even completely nonperiodic structures can
be expressed by including the proper sinu-
soidal components in the sum.

With Fourier transforms we can isolate el-
ements of the reinforcement schedule and its
resulting behavior that vary on different time
scales. If the behavior shows little variation
over short time scales, then the Fourier trans-
form will be small at higher frequencies, in-
dicating that we can largely ignore these time
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scales. In addition, this capability of Fourier
transforms to separate by frequency makes
possible the solution of an integral equation,
central to our quantitative analysis, that oth-
erwise is rather intractable.

As noted, the basic principle of the Fourier
transform is that a very broad class of func-
tions of time can be written as the sum of a
possibly infinite number of sine and cosine
functions. An identity called Euler’s formula
relates the complex exponential function with
the sine and cosine functions: & = cos 27fi
+ ¢sin 2mft. Using the complex exponential,
the Fourier decomposition is expressed as a
continuous summation of the form

H(?) :J h( f)e > df, (1)

where H(#) could be any function of time
[e.g., B(t) or R(¢) in Equation 3], and the
function of frequency A(f) is the amplitude
of the sinusoidal component contributing to
the sum at frequency f. In normal usage A(f)
is simply termed the Fourier transform of
H(?¢). An expression of similar form gives A(/f)
in terms of H(1):

h( f) =f H(1) & dt. (2)

The two members of the H(?), h(f) pair are
just different representations of the same in-
formation. The analytic definitions given in
Equations 1 and 2 connect this pair of time-
and frequency-domain functions. Equation 1
converts a function of frequency back to a
function of time and is commonly termed the
back or inverse Fourier transform. Similarly,
Equation 2 converts a function of time to a
function of frequency and is called the for-
ward Fourier transform, or simply the Fourier
transform.

The presence of negative frequencies in
Equations 1 and 2 is a mathematical conve-
nience. For the present experiment, the data
has only real, as opposed to complex, values,
and the Fourier transform could be defined
without reference to negative frequencies.
However, such a definition uses a somewhat
nonstandard form that would raise other dif-
ficulties. The impact of using the standard
form is that the negative frequencies will sim-
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ply mirror the positive frequencies, as will be
apparent in later figures.

Although Equations 1 and 2 are written in
terms of continuous functions of time and
frequency, H({) and A(f), they have been im-
plemented for discretely sampled data (such
as the 512 bin values of the repeated-trials
local averages) as a set of standard computer
routines called fast Fourier transforms
(FFTs). FFT routines are efficient, well tested,
and reliable (see Press, Flannery, Teukolsky,
& Vetterling, 1986, p. 381, for an extended
discussion). Examples of the present experi-
ment’s time-domain data transformed to fre-
quency-domain data with an FFT are given in
the detailed analysis below.

The Fourier transform is one of several
types of frequency transform. All concepts of
linear analysis developed in prior work (e.g.,
McDowell et al., 1993) using the Laplace
transform as the link between the time and
frequency domains are the same. In fact, the
Laplace transform can be derived as a special
case of the Fourier transform (Mathews &
Walker, 1965, p. 102).

Transfer Functions and the Prediction of
Behavior

The quantitative relationship between rein-
forcement schedule and supported behavior
given by the transfer function holds a central
role in our efforts to predict behavior. This
section covers how we use the transfer func-
tion, first to capture the relationship of the
supported behavior to the reinforcement
schedule seen in the Phase 1 data, then to pre-
dict the behavior supported in Phase 2 with a
different reinforcement schedule. We imple-
mented the analytic expressions that define
this prediction in numerical form as part of
our datareduction software. We will work
through these computational steps using a typ-
ical bird’s data to provide a specific graphical
example in the Results section below. The x2
measure for the fidelity of the prediction is
also developed in the Results section.

When expressed as functions of time, the
supported behavior at time ¢ B(?), and the
prior reinforcement schedule, R(¢'), are re-
lated through linear analysis (McDowell etal.,
1993) by the convolution integral

B(t) = f G(t — ")R({) dt'. (3)
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The function G(¢ — t') isolates the organism’s
contribution to the relationship of the sup-
ported behavior to the reinforcement sched-
ule. In a behavioral experiment, R(f') is de-
termined by the experimenter, and B(?) is the
measured response. Thus, if Equation 3 can
be solved for G(¢t — '), it should be possible
to predict the pigeon’s response to a different
reinforcement schedule. Phase 1 of this ex-
periment is used to find the Fourier trans-
form of G(¢ — '), then Phase 2 is used to
check the validity of the resulting prediction
of behavior. (It is worth noting that R(#) and
B(!) in the present work are repeated-trials
local average rates, whereas in previous work
a square pulse representation was used. Com-
puting repeated-trials local averages for rein-
forcement and response rates will yield quan-
tities that are equivalent to the value-like R(¢)
and B({) previously used. One can assume
that for this experiment all reinforcers have
a common absolute magnitude and, similarly,
all responses also have their own common ab-
solute magnitude. Hence, these magnitudes
will not affect the computations, and if a re-
peated-trials local average is computed, divid-
ing by the length of the time bin results in
dimensions of a local average rate.)

As discussed in prior work (McDowell et
al.,, 1993), the standard method to simplify
Equation 3 is by applying a frequency trans-
form, so that Equation 3 becomes

b(f) = g(Nr(f), (4)

where b(f), g(f), and r(f) are the Fourier
transforms of B(#), G(t — t'), and R(¢'), re-
spectively. In a relationship such as Equation
4 that describes the transformation of an in-
put into a resulting output as functions of fre-
quency, g(f) is termed the transfer function.

Our data-reduction software uses Equation
4 in two somewhat different ways to bypass
Equation 3. The major processing stages for
both phases of the experiment are shown
schematically in Figure 3. In each phase, the
processing yields the boxed quantity.

Data from the first phase determine the
transfer function, g(f), for a specific subject.
The three steps in the Phase 1 (pl) process-
ing are:

1. Transform the measured reinforcement
rate as a function of time, Rpl(t), to the func-
tion of frequency, 1, (f).

2. Transform the measured response rate
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as a function of time, B, (1), to the function
of frequency, b,,(f).

3. From Equation 4, compute the transfer
function as a function of frequency, g(f), by
division:

_ ()

g(f) T

If a linear analysis is appropriate for simple-
schedule behavior, then the transfer function
should isolate the characteristics of the spe-
cific organism under study and should not
depend on the particular reinforcement in-
put and response output used in its deter-
mination. The Phase 2 (p2) processing uses
this assumed independence to predict the re-
sponding that ought to be seen with a new
reinforcement schedule. There are again
three steps in the processing:

1. Transform the measured reinforcement
rate as a function of time, R ({), to the func-
tion of frequency, r,,(f).

2. Compute the predicted Phase 2 respond-
ing, bB54(f), as a function of frequency using
the transfer function, g(f), obtained in Phase
1. The prediction is given by Equation 4:

b (f) = g(N)me(f)- (6)

3. Inverse transform the predicted re-
sponse rate as a function of frequency,
bpd(f) to a function of time, BpRy(?), for
comparison to the response rate actually mea-
sured, By (1).

It is important to note that By (7) is an
absolute prediction based solely on the Phase
1 measurement of g(f) and the Phase 2 re-
inforcement schedule, R (f); no free (or ad-
justable) parameters are used in the predic-
tion (beyond the determination of g(f) in
Phase 1).

There are technical points germane to our
FFT-based data reduction that are, for the
most part, more of interest to students of nu-
merical analysis than of behavior analysis, so
we simply note their existence here. They are
dealt with in the Appendix, which presents a
tutorial test case of linear analysis that is ap-
propriate to the datareduction problem at
hand. Their chief effect is to produce spike
artifacts in transfer functions computed with
Equation 5. In general, the effects of these ar-
tifacts will not be important in the prediction
of behavior because they occur mainly at high-
er frequencies and have random phases. The

(5)
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Phase 1 processing for g(f)

Time Domain:

FFT

Frequency Domain:

Rpl(t) T fé G(t - ti)Rpl(t,)di/ = Bpl(t) - pl(?f)

roi(f) — W= L bor ()

Phase 2 processing for BE(t)

FFT

J

p2

Time Domain:

FFT

Frequency Domain:

Rpa(t)- - - ofg Gt — 1) Rpa()dt! = Bpred(t)

roa(f) — g(F)rpa(f) = BB F)

‘_’BPZ(t)

p2

Inverse

FFT

Fig. 3. Schematic diagram of the steps of the data processing (see text). Data from the first phase are used to determine
the pigeon’s transfer function, g(f). Data from the second phase are used to predict the pigeon’s behavior BBd(#) and
the prediction is compared to the measured behavior B (/). FFT routines provide the needed transformations between
the time domain and the frequency domain and are shown as the vertical arrows labeled FFT and Inverse FFT.

important point for the reader to keep in
mind is that although our data-reduction
method is a sound means of extracting trans-
fer functions, care is required in its actual use.

RESULTS

Bird 369: Step-by-Step Analysis and
Intermediate Results

This subsection illustrates the data-reduc-
tion processing stages and displays the im-
portant intermediate results graphically for 1
of the 16 birds in this study. Bird 369 was se-
lected as an example solely because it had the
lowest serial number. With the exception of
Bird 451 noted below, the data from any bird
could have been used to illustrate the analy-
sis. As discussed above and shown in Figure
3, the processing stages use Phase 1 reinforce-

ment and response data to extract a transfer
function and then make a prediction of the
Phase 2 responding.

The data reduction begins with collecting
the reinforcement and response times from
all trials after stability and computing the re-
peated-trials local averages for reinforcement
and response rates. The reinforcement rate
as a function of time, R,,(), for Bird 369 is
shown in the top frame of the upper right
panel of Figure 2. The response rate as a
function of time, Bpl(t), for Bird 369 is shown
in the lower frame of the same panel of Fig-
ure 2. Note that the scatter or noise in B, ({)
is relatively smaller than the scatter in R, (7).
Also note that the sharp edge in R, () at the
onset of extinction produces a softer falling
edge in the bird’s behavior seen in B, (7).

The data from the experiment are discrete
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Fig. 4. The Phase 1 results for Bird 369 displayed in the frequency domain and the amplitude of the resulting
transfer function (see text). Note the expected symmetry about zero is apparent in r(f), b(f), and g(f).

sets of rate samples over a finite time interval.
This finite sampling resolution in the time do-
main is reflected in a corresponding finite
sampling resolution in the frequency domain.
The frequency scale produced by an FFT rou-
tine follows from the sampling rate employed.

In this experiment, the trial length, 7, limits
the lowest frequency component to
1
= s 7
ji Ttrial ( )

or 1 mHz (1 mHz = 0.001 Hz) for the 1,000-
s trials used. The highest frequency compo-
nent is set by the Nyquist critical frequency,
given by

Jo= ox (8)

where A is the time period between successive
samples. Because the rates are computed for
512 time bins over the 1,000-s trials, the high-
est frequency components are at £256 mHz.
These two limits mean that in the frequency
domain we can determine r(f), b(f), and g(f)
at frequencies of —255 mHz, —254 mHz, . . .,
—1 mHz, 0 mHz, +1 mHz, +2 mHz, ...,
+255 mHz, +256 mHz. For further explana-
tion of FFT routine frequency scales and
Equations 7 and 8, please refer to Press et al.
(1986).

The amplitude of the reinforcement rate as
a function of frequency, |rp1(f)|, for Bird 369
is shown in the top panel of Figure 4. Because
|7,,(f)| is an amplitude per unit frequency
range, the units are reinforcers per second-
Hertz (or reinforcers per second divided by
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Hertz). A frequency-domain phase plot also
exists because 7,,(f) is a complex function.
The phase information is essential if one is
actually doing the computations with Equa-
tion 5. For the discussion in this paper, how-
ever, the amplitude plots are sufficient. The
form of |r,, (f)| is typical of an FFT for exper-
imental data. The lower frequencies contain
most of the meaningful structure of the data,
and the higher frequencies have approxi-
mately equal amplitudes per frequency bin.
To have equal amplitudes per frequency bin
is characteristic of white noise; this region is
termed the noise floor and is considered not
to contain useful information. The low-fre-
quency boundary of the noise floor for
|7,,(f)| is not sharply defined, but begins no
later than =100 mHz. The amplitude of the
response rate as a function of frequency,
|bpl ()], for Bird 369 is shown in the middle
panel of Figure 4. Comparing Bird 369’s
time-domain plots of Figure 2 and frequency-
domain plots in Figure 4, one can see that
the sharp edge at 200 s and the fast fluctua-
tions in the reinforcement rate R, () gener-
ate substantially greater amplitudes at higher
frequencies! in |7,,(f)| than are generated in
|, (/)| by the softer (slower) falling edge and
steadier response rate of B ,;({).

By comparing the frequency-domain am-
plitude plots for Bird 369’s reinforcement
and response rates in Figure 4, one can see
graphically the basic character of the transfer
function. The behavior of Bird 369 is affected
primarily by the low frequencies, rather than
the higher frequencies, that are present in
the input reinforcement. In the language of
linear analysis, one would describe Bird 369
as operating as a form of low-pass filter.? Fur-
thermore, all birds in this experiment have
transfer functions with this same general low-
pass character. These transfer functions allow
prediction of the Phase 2 responding, in part,
by quantifying how much each bird will filter
out the higher frequencies.

The amplitude of the transfer function as
a function of frequency, |g(f)|, for Bird 369 is
shown in the bottom panel of Figure 4. For

! The amplitude of |r,,(f)] is larger relative to the size
of the zero frequency component spike than the ampli-
tude of |bp1(/)| at most frequencies.

2 There are many other types of low-pass filters beyond
the simple resistor-capacitor low-pass filter discussed in
the Appendix.
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low frequencies, roughly f = 30 mHz, the
transfer function is substantially larger than
unity. These low-frequency values of the trans-
fer function reflect that the pigeon’s overall
response rate (typically 2.5 responses per sec-
ond) is faster than the reinforcement rate
(typically 1 reinforcer per 20 s). The relative
size of the transfer function at low frequen-
cies compared to higher frequencies means
that the resulting behavior is primarily a func-
tion of the longer time scales in the reinforce-
ment schedule, such as the transition from VI
to extinction that occurred once per 1,000 s.
There are, however, many spikes in the high-
er frequency region. From Figure 4 one can
see that these spikes occur mostly at frequen-
cies for which both the reinforcement input
and the response output amplitudes are de-
termined mainly by noise. These spikes are
generated at frequencies where r,,(f) is very
small. The spikes will not greatly affect the
prediction made with Equation 6, Because at
these higher frequencies, 7,,(f) will also be
small. Still, one direction for future work will
be reducing these effects of measurement
noise on the computations.

With the measurement of the transfer func-
tion, g(f), in hand, we can now predict the
behavior that will be supported in steady state
by a new schedule. We assigned Bird 369 to
the Phase 2 test schedule group that had the
same VI 20-s schedule and changed the step-
transition time, 7y, to 300 s. The experimen-
tally measured repeated-trials local average
response rate as a function of time, B,,({), for
Bird 369 during Phase 2 is shown in the top
panel of Figure 5. The predicted response
rate as a function of time during Phase 2,
Bpd(1), found using the transfer function of
Figure 4, is shown in the bottom panel of Fig-
ure 5. On the whole, the predicted behavior
agrees with the measured behavior. (A x? as-
sessment of that agreement is presented be-
low.)

The computation of the transfer function
and prediction is the very simplest one could
do. This prediction was made using 7T, =
1,000 s, which ignores the difficulties caused
by the commensurate frequencies of zero am-
plitude discussed in the Appendix. No effort
was made to reduce the effects of noise. In
addition, there are time periods during which
the bird is predicted to have an unattainable
negative response rate. Iterative methods do
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Fig. 5. The experimentally measured response rate as
a function of time, B,(?), for Bird 369 during Phase 2 is
shown the top panel. The predicted response rate,
Bpied(t), for Bird 369 during Phase 2 is shown in the bot-
tom panel.

exist to constrain the transfer function, so re-
sponding is always greater than or equal to
zero, but the implementation of such con-
straints would take us far afield.

X2 Measure and Overall Resulis

We predicted the Phase 2 behavior for the
remaining 15 birds with the same data-reduc-
tion routines we used on Bird 369’s data. We
also predicted the behavior for all 16 birds
with the common time base length, 7.,
changed from 1,000 s to 977.11 s (the ration-
ale for the second value of T, is given in the
Appendix). Currently, no other analyses
make predictions for the detailed steady-state
form of B(t). Hence, we are limited in quan-
titative evaluation of the results to measuring
the discrepancy from a perfect prediction,
that is, the discrepancy from the real ob-
served Phase 2 data.

As a global measure of our Phase 2 predic-
tions’ accuracy, we used x2, the reduced x? of
the discrepancy between BPyd(¢), the linear
system prediction, and B, (?), the pigeon’s
measured responding. The expression for x2
is given in this case by (Bevington, 1969, p.
187)

181
2 = —
TN 1=21 G%p

By () — Bpd(6)1% (9)
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where 0%  is the variance in the ith measured
Phase 2 response rate, B, (f). Estimating

B, during extinction is problematic because
the response rate is so low that some of the
time intervals contain no responses for any
trial, leading to B,,(4) = 0 and (,z =0.A
reasonable estimate of the variance durlng
the extinction interval is (rB T the average
of those actually measured (1nclud1ng those
of zero value). Thus the expression used for
X2 becomes

_ l M 1
N =1 0-%pQ,i

N

+ >

i=M+1 O'B“XT

Byo(t) — Bysi(1))”

———[B(t) — B"”“(t-)]g},

(10)

where ¢, is the time closest to the onset of
extinction at 7y;. Note that the normalizing
factor that appears in Equation 10 is 1/N be-
cause there are no free parameters in
Bped(t). Hence, the number of degrees of
freedom is equal to the number of data
points.

The values of x2 for all birds in this study
are shown in Table 1 computed both with
T.;. at the full 1,000 s and at 977.11 s. Be-
cause both Equations 9 and 10 are measures
of a prediction’s discrepancy, the lower the
value of 2, the better the quality of the pre-
diction. The x2 values specify the probability
that a random (or chance) prediction could
be as close to the data as our prediction. The
distribution of x? values was noticeably bi-
modal. In the majority of cases, agreement
between the actual Phase 2 responding and
our prediction is better than chance for a p
< .01 threshold. (For N = 512, the agree-
ment between the predicted and obtained be-
havior occurs by chance less than one time in
100 when the x2 is less than 0.8603.) When
the prediction failed, the values of x2 were at
the other extreme. (The agreement between
the predicted and obtained behavior occurs
by chance at least 99 times in 100 when the
X2 is greater than 1.1511.)

The reader should be mindful that Equa-
tion 10 measures the overall quality of the
prediction. There are smaller features in
most birds’ Phase 2 responding that are not
accurately predicted. Even so, the fidelity to
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Table 1
The values of x? for the birds in this study.

Bird X2 (1,000 s) X2 (977.11 s)

Phase 1 Fleshler-Hoffman: VI 20, 7y, = 200 s
Phase 2 Fleshler—-Hoffman: VI 40, Ty, = 300 s

424 0.4791 0.5601
467 0.3615 0.4892
468 1.1792 1.3879
482 0.4280 0.4865

Phase 1 Fleshler—-Hoffman: VI 20, 7y, = 200 s
Phase 2 Fleshler-Hoffman: VI 40, 7y, = 200 s

447 0.6110 0.2627
460 0.2779 0.4455
461 1.0350 0.9656
475 0.2794 0.2826
Phase 1 rectangular: VI 20, Ty, = 200 s
Phase 2 rectangular: VI 20, 7y, = 300 s
369 0.5880 1.3112
438 10.1653 2.1843
445 1.4199 0.5767
451 1.0879 0.9083
Phase 1 rectangular: VI 20, 7y, = 200 s
Phase 2 rectangular: VI 40, Ty, = 200 s
426 0.4322 0.9747
448 1.5433 2.4711
454 0.3737 0.3904
488 3.3400 3.5335

Note. Ty; indicates the length of time during the trial
that the VI schedule was in effect.

observed detail in the measured behavior by
predicted behavior can be reasonably good.
As an example, Figure 6 shows the measured
and predicted Phase 2 responding of Bird
447. Also note that a bird’s transfer function
is unique to that specific bird. For example,
the best Phase 2 prediction (lowest x2) for
Bird 369 is made with Bird 369’s own transfer
function.

In most cases in which the prediction was
unsatisfactory, the difficulties could be traced
to a processing artifact that occurs in Equa-
tion 5. As has been noted and is discussed
further in the Appendix, at some frequencies
the amplitude of r,,(f) can be quite small and
can result in a narrow spike in the transfer
function. The data from Bird 488 provide a
good illustration of the artifact and its effect
on the prediction. The top panel of Figure 7
shows the amplitude of the transfer function.
Note the large spikes at £10 mHz. The bot-
tom panel of Figure 7 shows the predicted
Phase 2 behavior. A large 10-mHz oscillation
is clearly apparent in the prediction. Howev-
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Fig. 6. The experimentally measured response rate as
a function of time, B, (), for Bird 447 during Phase 2 is
shown the top panel. Note that the data set has been
truncated slightly so 7., = 977.11 s (see Appendix). The
predicted response rate, Bpd(f), for Bird 447 during
Phase 2 is shown in the bottom panel.

er, if we remove the most serious spike arti-
facts by replacing the values g(f) with nearest
neighbor averages at the *10-mHz and *5-
mHz spikes, we reduce the discrepancy be-
tween the predicted and the obtained behav-
ior. The revised prediction had a x2 of 1.2023,
improved by roughly a factor of three. There
are more formal and mathematically rigorous
methods to correct for such spike artifacts,
but clearly the entire problem can be simply
avoided. In future experiments, the schedule
of reinforcement used in the measurement of
the transfer function should be selected so
that the amplitude of 7,(f) is significantly
greater than zero in the frequency region of
interest.

The response pattern of 1 of the birds, Bird
451, was unique and caused the data reduc-
tion and prediction methods to fail in an in-
teresting manner. The Phase 1 reinforcement
and responding are shown in Figure 8. Un-
like all other birds in this study, Bird 451 re-
sponded at a relatively high rate throughout
Tyia (including the entire 800-s extinction pe-
riod). This violates a restriction of our FFI-
based computation. Recall from Equation 7
that the lowest nonzero frequency compo-
nent that the FFT will determine is for the
frequency 1/ 7 ;,. In the case of Bird 451, the
behavior in the time domain would have con-
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Fig. 7. The amplitude of the transfer function, |g(f)|, for Bird 488 is shown the top panel. The predicted response

rate, B,y(¢), for Bird 488 during Phase 2 is shown in the bottom panel.
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Fig. 8. The experimentally measured reinforcement
rate as a function of time, R, (#), for Bird 451 during
Phase 1 is shown in the top panel. The measured re-
sponse rate, Bpl(t), for Bird 451 during Phase 1 is shown
in the bottom panel. Compare this bird’s response pat-
tern to those of Bird 369 (Figures 2 or 5), Bird 447 (Fig-

ure 6), or any of the other birds shown in Figure 2.

tinued during extinction for a longer time
than the limit imposed by T,;,. Hence, in the
frequency domain there are behaviorally im-
portant frequency components below the
1/ T, limit. Because the FFT excludes these
lower frequencies from the computations, the
prediction does not agree with the measured
Phase 2 behavior to any significant extent.

DISCUSSION

The conclusions that can be drawn from
this study are that (a) the general qualitative
form for pigeons’ transfer functions is that of
a low-pass filter, and (b) using the experi-
mentally measured transfer function allows
some predictability of the pigeons’ behavior
under a different set of contingencies. The
present experiment is the first effort to ex-
tract a transfer function from experimental
data and the first to use a linear analysis to
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predict behavior dynamics, albeit in a repeat-
ed-trials local average steady state. The values
of X2 are reasonably good for a prediction
without free parameters, suggesting at least
some measure of confidence in the applica-
tion of linear analysis to behavior. Whether
other methods, linear or not, can make com-
parable or superior predictions of future dy-
namic behavior based on prior experimental
observations remains an open question.

A variety of past work has sought to char-
acterize a reductionistic process that could re-
sult in the functional properties obtained be-
tween temporal requirements and obtained
behavior. These efforts are exemplified by a
number of models based on internal pace-
makers (Church, 1984; Gibbon, 1991; Kil-
leen, 1991). In contrast, the transfer function
provides a quantitative method to capture an
external view of the empirical relationship
between the temporal properties of environ-
mental contingencies and the supported be-
havior. Consequently, our analysis is silent on
an internal view and does not distinguish or
contradict the various timing models. How-
ever, should one of these models of timing be
recast for application to our experimental
procedure, a prediction of low-pass behavior
must fall out naturally. In addition, our ex-
periment is silent on the mechanism that
causes short IRI distributions to be preferred.
The low-pass character applies to the overall
dynamic structure of the trial.

Based on the results of this experiment,
one can now refine the measurement of a
steady-state transfer function, and more de-
manding tests can be designed. From the
standpoint of linear analysis, this experi-
ment’s results, particularly the low-pass char-
acter of the transfer function and the exis-
tence of computational spike artifacts,
provide important guideposts for improve-
ment. In future work, the reinforcement
schedule should permit more detailed study
of the lower frequency domain (i.e., frequen-
cies of roughly =150 mHz). The reinforce-
ment schedule will also have to be carefully
chosen to prevent the occurrence of zero or
near-zero amplitudes within this behaviorally
significant frequency domain.

PALYA et al.
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APPENDIX

Computation of a transfer function by di-
viding two FFTs, as is done by Equation 5,
does introduce some artifacts into the data
processing. Such difficulties with divisions are
fairly standard in frequency-domain work, be-
cause many time-domain functions yield fre-
quency-domain functions with zero ampli-
tude for some particular frequencies and/or
for all frequencies higher than some cut-off
frequency. Thus, r(f) can easily be zero (or
very close to it) for a range of frequencies,
and Equation 5 cannot be evaluated within
this range. For an ideal linear system, b(f)
would also be zero at these frequencies and
result in the indeterminate expression of 0/0
for g(f). This problem is exacerbated by the
fact that computer FFT algorithms do not
perform true Fourier transforms over a con-
tinuum of frequencies, but instead perform a
discrete Fourier transform (DFT): an approx-
imation using a discrete set of frequencies
(Oppenheim & Schafer, 1975; Press et al.,
1986). As will be shown below, the sharp step
from a static VI schedule to a period of ex-
tinction in the time domain can produce a
discrete set of frequencies at which r(f) = 0.

A test case will illustrate the use of FFI-
based routines to solve a linear analysis prob-
lem and provide some insight into the tech-
nique’s stability and limitations. Unlike the
behavior of a pigeon, we have an excellent
theoretical model for the behavior of the
electrical circuit used as the test case. As a
result, we are able to compare the transfer
function found by division of output by input
with the correct transfer function. We shall
see how the problems, primarily noise and
zero-amplitude frequencies, introduce spike
artifacts into the computed transfer function.
We should expect the same effects to appear
in any real data of similar form.

This test case is a standard low-pass electri-
cal filter normally built with a resistor and ca-
pacitor in series and commonly referred to as
an RC low-pass filter The circuit is shown in
Figure 9. Extended discussion of this circuit
can be found in most basic electrical circuits
textbooks (e.g., Anderson & Beeman, 1973,
p- 137). The most important point about this
circuit for the present discussion is that it is
completely linear. This means that an expres-

Fig. 9. A resistor-capacitor (RC) low-pass filter. The
characteristic time constant of such a filter is given by 7
= RC. V,,(t) and V,,(¢) indicate the input and output
voltages as functions of time.

sion of Equation 3’s form relates the output
voltage to the input voltage:

Vou (1) = f Gre(t = 1) Vi () dt’. (11)

In the frequency domain the voltages are re-

lated by
Uou(f) = Gre( v (f). (12)

Beyond satisfying the general relations of
Equations 11 and 12, an RC low-pass filter is
a convenient test case because closed-form
analytic expressions exist for both gy (f) and
a Vi, (), Vo, (?) pair.

Commensurate Frequencies of Zero Amplitude

We will begin with a V;,(?), V(¢ pair that
is reasonably similar to the R({), B({) pairs
observed in the actual data of this study.

We choose the input voltage shown in the
top panel of Figure 10. The analytic expres-
sion for a square step in the time domain is
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RC Test —— 7=35
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Fig. 10. A square step input voltage (V;,) is shown in

the top panel. The bottom panel shows the output volt-
age (V,,) from the circuit shown in Figure 9.

V() = {})

The output voltage generated by an RC low-
pass filter in response to the input square
step given by Equation 13 is

0=t=a

a<ti (13)

e t/1

1 — 0=t=a
‘/;)ul(t) = {g(l(l)/f a <t (14)

and is shown in the bottom panel of Figure
10.

The analytic expression for the transfer
function of an RC low-pass filter is

_ 1
ch(f) = ¢ 3 (15)
1+ (f
§A
where the phase angle is
b = arctanz, (16)

e}

and the filter’s critical frequency, £, is a char-
acteristic of the filter related to its time con-
stant, T = RC, by

1
fo:—

omt

a7)

The transfer function’s amplitude, |gic(f)],
computed with Equation 15, is shown in the
top panel of Figure 11.

Equations 13 and 14 provide an input-out-
put pair in the correct form to run through
the Phase 1 processing described in the text
and shown schematically in Figure 3. Accord-
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ingly, the middle panel of Figure 11 shows the
lgec(f)| that results when the Vi (?), V,.(?)
pair shown in Figure 10, which has a = 200,
Tyim = 1,000, and 7 = 35, is run through the
data-reduction software. The disagreement
between the actual and computed RC low-
pass transfer functions is apparent and illus-
trative of the problems encountered in re-
ducing the data from our experiment. When
Equation 13 is transformed into the frequen-
cy domain with Equation 2, one obtains

sin (2mfa/2)

. — 2mifa/2
vll\(f) e 2"n'f

(18)

Note that for nonzero frequencies, the factor
sin (2mfa/2) will cause v, (f) to be zero if fa
is an integer. If @ = 200 and 7T,;,= 1,000, fa
is exactly an integer at f = *5 mHz, *10
mHz, =15 mHz, ..., and so forth. Note that
Upu(f), the Fourier transform of V,_,(?), is,
from Equation 12, also zero at these frequen-
cies. The significance to our data reduction
is that, in an unanticipated mathematical co-
incidence (caused by selecting a value of Ty,
that is a simple rational fraction of 7,;,, e.g.,
1/5 for Phase 1), these same frequencies are
used, because of the discrete Fourier trans-
form, to evaluate Equation 5. This accounts
for the large artifacts at every fifth frequency
shown in the middle panel of Figure 11. At
the remaining frequencies, the transfer func-
tion values computed by the data-reduction
software agree, within machine precision, to
the correct values calculated directly with
Equation 15.

As a simple refinement to the data reduc-
tion that avoids this problem of commensu-
rate frequencies of zero amplitude, we can
exclude a small interval from the end of the
trial. This introduces a slight offset between
all the FFT component frequencies defined
by Equation 7 and the zeros of Equation 18.
To generate this offset, we arbitrarily chose
T = 977.11 s and ignored the data from
the last 22.89 s of each 1,000-s trial. The bot-
tom panel of Figure 11 shows the |gy.(f)| that
results for a V,(¢), V., (¢ pair that has a =
200, T, = 977.11, and T = 35. The change
in the FFT routine frequency scale obtained
by changing T, is small, 2.3% in fj, but it is
sufficient to avoid the zero-amplitude fre-
quencies when fa is an integer. As a result,
the transfer function computed from this
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Fig. 11. The top panel shows the transfer function of an RC low-pass filter as computed directly from the circuit’s

electrical properties. The middle panel shows the transfer function computed with discretely sampled values from

Equations 13 and 14, where a = 200 and 7,

i = 1,000. The bottom panel shows the transfer function computed

with discretely sampled values from Equations 13 and 14, but where ¢ = 200 and 7, = 977.11.

Viu(?), Vo (?) pair agrees closely with the cor-
rect transfer function shown in the top panel.
However, there are still some frequencies
that, although not exactly commensurate
with a zero-amplitude frequency, are quite
close to these frequencies. At such frequen-
cies, which occur roughly every 45 mHz, the
transfer function is improperly determined.

Impact of Noise

Across a broad band of the higher frequen-
cies measured in this experiment, the ampli-
tudes of both r(f) and b(f) are small and are
dominated by random noise. The noise has
the minor advantage that the actual occur-
rence of a zero denominator (discussed

above) almost never happens, but, obviously,
the computed g(f) will not be reliable when
either the numerator or denominator in
Equation 5 is dominated by noise. The ulti-
mate effect is that the predicted Phase 2 re-
sponding will always be noisier than the ac-
tual data.

One can accurately simulate experimental
data that contain noise (rapid uncorrelated
fluctuations) and use the RC low-pass filter
test case to study how noise limits the meth-
od’s resolution. The overall result of these
tests is that the resolution of our data-reduc-
tion method decreases as the noise increases.

Figure 12 shows a V,(#), V (¢ pair to
which we have added a moderate amount of
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RC Noise Test —— 7=35
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Fig. 12. The top panel shows an input to an RC low-
pass filter with Gaussian noise added. The bottom panel

shows an output from an RC low-pass filter with Gaussian
noise added.

PALYA et al.

Gaussian-distributed random noise. To mimic
the experiment’s reinforcement data, the
Via (#) shown in Figure 12 has no added noise
during the period corresponding to extinc-
tion in the actual experiment. We found,
somewhat counterintuitively, that removing
the noise from this portion of the input in-
creases the data-reduction software’s sensitiv-
ity to noise.

Figure 13 shows the results generated by
our data-reduction software when the V, (%),
Vow (9) pair from Figure 12 is used to compute
a transfer function, gyc ,oie(f)- The top panel
shows the amplitude of the transfer function,
|gkcnoise () |- Although the low-frequency val-
ues of the transfer function are faithful to
|grc ()], for frequencies beyond =50 mHz the
noise causes large spikes in the transfer func-

RC Noise Transfer Function —— 7=35
4F E
¢ OF 4 0=203.11
> E 3
S 2F 3 Twa=1000
> E 3
of E
-0.2 0.0 0.2
frequency
_ RC Noise Test —— Phose 2
1.5F E
a=317.8
= 1.0F 7
= Tuwe=1000
> 0.5 y
0.0 Onoise=0.05
0 200 400 600 800 1000
time
RC Noise Test —— Phase 2 (predicted)
1.0¢ a=317.8
= 05¢ Twa=1000
<0 [
0.0 ]
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time
Fig. 13. Results generated by our data-reduction software when the V, (¢), V,,(¢) pair from Figure 12 is used. The

top panel shows the amplitude of the transfer function as a function of frequency, |grcnoie()|- The middle panel is
an output voltage computed directly from the circuit’s electrical properties with an appropriate noise envelope

\%4

out,noise

(). The bottom panel shows predicted output voltage as a function of time,

Vpred

out,noise

(), computed with the

derived transfer function. Note that the bottom two panels of this figure are functions of time, whereas the top panel

is a function of frequency.
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tion. As one increases the noise amplitude,
these spikes appear at lower frequencies. The
middle panel shows an output voltage com-
puted directly from the circuit’s electrical
properties when the input step lasts for 317.8
s instead of 203.11 s with a noise addition:
Viuinoise (). The bottom panel shows the pre-
dicted output voltage, Vired . (#), computed
with the derived transfer function, gyc noise (f) -

Because both V,, (#) and V_ (%) have noise,
it should not be surprising that the prediction
will have more noise than either one. The di-
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vision in Equation 5 will increase the relative
noise amplitude on average by a factor of
about V2 for the lower frequencies when
noise is not, in general, a substantial prob-
lem. At higher frequencies when the noise-
free amplitudes for v, (f) and wv,,(f) are
small, the noise contribution to gxc peise (f) Will
dominate. A possible refinement of the data
reduction would be smoothing of these high-
frequency spikes. Finally, during the evaluation
of Equation 6, a second increase in relative
noise amplitude will occur.



